Multi-State Dependent Impulsive Control for Holling I Predator-Prey Model
نویسندگان
چکیده
منابع مشابه
Multi-State Dependent Impulsive Control for Holling I Predator-Prey Model
According to the different effects of biological and chemical control, we propose a model for Holling I functional response predator-prey system concerning pest control which adopts different control methods at different thresholds. By using differential equation geometry theory and the method of successor functions, we prove that the existence of order one periodic solution of such system and ...
متن کاملThe dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator
According to the economic and biological aspects of renewable resources management, we propose a Lotka-Volterra predator-prey model with state dependent impulsive harvest. By using the Poincaré map, some conditions for the existence and stability of positive periodic solution are obtained. Moreover, we show that there is no periodic solution with order larger than or equal to three under some c...
متن کاملGlobal stability in a diffusive Holling-Tanner predator-prey model
A diffusive Holling–Tanner predator–prey model with no-flux boundary condition is considered, and it is proved that the unique constant equilibrium is globally asymptotically stable under a new simpler parameter condition. © 2011 Elsevier Ltd. All rights reserved.
متن کاملPositive Periodic Solutions for Neutral Delay Ratio-Dependent Predator-Prey Model with Holling-Tanner Functional Response
The dynamic relationship between the predator and the prey has long been and will continue to be one of the dominant themes in population dynamics due to its universal existence and importance in nature 1 . In order to precisely describe the real ecological interactions between species such asmite and spidermite, lynx and hare, and sparrow and sparrow hawk, described by Tanner 2 and Wollkind et...
متن کاملComplex dynamics of a Holling-type IV predator-prey model
In this paper, we focus on a spatial Holling-type IV predator-prey model which contains some important factors, such as diffusion, noise (random fluctuations) and external periodic forcing. By a brief stability and bifurcation analysis, we arrive at the Hopf and Turing bifurcation surface and derive the symbolic conditions for Hopf and Turing bifurcation in the spatial domain. Based on the stab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2012
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2012/181752